The CoRisk-Index: A data-mining approach to identify industry-specific risk assessments related to COVID-19 in real-time


While the coronavirus spreads, governments are attempting to reduce contagion rates at the expense of negative economic effects. Market expectations plummeted, foreshadowing the risk of a global economic crisis and mass unemployment. Governments provide huge financial aid programmes to mitigate the economic shocks. To achieve higher effectiveness with such policy measures, it is key to identify the industries that are most in need of support. In this study, we introduce a data-mining approach to measure industry-specific risks related to COVID-19. We examine company risk reports filed to the U.S. Securities and Exchange Commission (SEC). This alternative data set can complement more traditional economic indicators in times of the fast-evolving crisis as it allows for a real-time analysis of risk assessments. Preliminary findings suggest that the companies' awareness towards corona-related business risks is ahead of the overall stock market developments. Our approach allows to distinguish the industries by their risk awareness towards COVID-19. Based on natural language processing, we identify corona-related risk topics and their perceived relevance for different industries. The preliminary findings are summarised as an up-to-date online index. The CoRisk-Index tracks the industry-specific risk assessments related to the crisis, as it spreads through the economy. The tracking tool is updated weekly. It could provide relevant empirical data to inform models on the economic effects of the crisis. Such complementary empirical information could ultimately help policymakers to effectively target financial support in order to mitigate the economic shocks of the crisis.

In arXiv
Leonie Neuhäuser
Leonie Neuhäuser
PhD Candidate in Computer Science

My research interests include Network Science, Complex Systems and Computational Social Sciences.